

PROJET D'ÉVALUATION ÉNERGÉTIQUE DU BÂTIMENT

Formation:

Cycle Ingénieur – ING3 TEF

Module:

ENF 119 - Systèmes énergétiques dans le bâtiment

Logiciels utilisés:

Pleiades STD, Comfie, EN12831

Réalisé par :

ELGHAZOUANI Abdelilah

Kinga claude mavhy

IFAOUI Amine

Sujet: Étude énergétique d'un bâtiment tertiaire

Encadré par :

JEROME Solard

Année de formation: 2025/2026

Table des matières

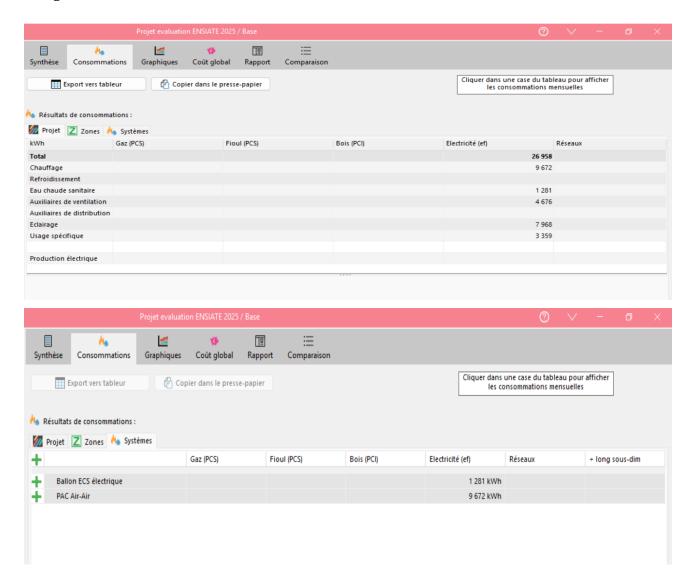
1. Introduction	1
2. État initial du bâtiment	1
3. Étiquette énergétique initiale	2
4. Analyse des systèmes existants	4
5. Scénario de base modifié	
6. Améliorations techniques proposées	6
6.1 Chauffage / Refroidissement	6
6.2 ECS	7
6.3 Ventilation	7
6.4 Éclairage	8
6.5 Production photovoltaïque	8
7. Résultats après optimisation	10
8. Synthèse comparative AVANT / APRÈS	11
9. Synthèse finale	
10. ANNEXES	

1. Introduction

Dans le cadre du module ENF 119, une évaluation énergétique a été menée sur un bâtiment tertiaire à l'aide du logiciel Pleiades. L'objectif était d'optimiser les systèmes climatiques (chauffage, refroidissement, ECS, ventilation, éclairage) afin de réduire les consommations et les émissions de gaz à effet de serre (GES), en conformité avec le cahier des charges fourni par ENSIATE. Les résultats ont permis d'atteindre une étiquette énergétique de classe A.

2. État initial du bâtiment

Surface utile du bâtiment(SHAB): 437.9 m²



Station météo utilisée: Trappes - H1a (RT2012)

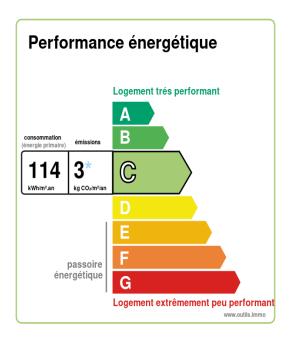
Nom	Trappes - H1a (RT2012) fichier TrappesH1aRT2012.try	Altitude	168 m
Longitude	2° 0' 0''E	Latitude	48° 46' 12"N
Températures	Minimale	Maximale	Moyenne
Temperatores	-3.50°C	33.00°C	12.05°C

Le calcul d'éclairement et le calcul de consommation ont été lancés avec les scénarios d'origine. Les résultats initiaux sont les suivants :

3. Étiquette énergétique initiale

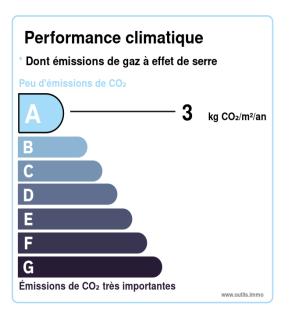
Consommation énergétique par usage (hors usages spécifiques)

Usage	Énergie finale (kWhEF)	Énergieprimaire (kWhEP)	Émissions CO₂ (kg)
Chauffage	9 672	22 245,6	773.76
ECS	1 281	2 946,3	83,265



Ventilation	4 676	10 754.8	303,94
Distribution	0	0	0
Éclairage	7 968	18 326.4	517.92
TOTAL	23 600	54 273.1	1678.885

Les coefficients utilisés sont :


- Conversion en énergie primaire : 2.3 (électricité)
- Émissions de GES : $80~{\rm gCO_2/kWhEF}$ pour le chauffage, $65~{\rm gCO_2/kWhEF}$ pour les autres usages électriques

Consommation d'énergie primaire = 54273.1/437.9 = 123.95 kWhEP/m².an

Émissions de GES = $1678.885/437.9 = 3.83 \text{ kgCO}_2/\text{m}^2.\text{an}$

4. Analyse des systèmes existants

- ♣ Chauffage / Climatisation
 - Système en place : Pompe à chaleur Air-Air type split
 - Distribution : Air soufflé via unités murales intérieures
- Rendement estimé : COP moyen < 2,5 en hiver, notamment à basse température extérieure
- Pilotage : Absence de régulation horaire programmée fonctionnement manuel ou continu

Point faible : Faible performance saisonnière, notamment en période de pointe hivernale.

Pas de zonage ou de gestion centralisée, entraînant des dérives de consommation et une mauvaise maîtrise thermique.

Eau chaude sanitaire (ECS)

- Système en place : Ballon électrique de type accumulation (effet Joule), puissance estimée $\sim 1.5~\mathrm{kW}$
 - Capacité estimée : ~50 litres, non adapté à des usages simultanés
 - Pilotage : Chauffage permanent sans programmation

Point faible : Très forte consommation spécifique (\sim 25 à 30 % de la conso finale dans les zones peu occupées).

Aucun système de récupération de chaleur ou d'optimisation de la demande (absence d'horloge ou capteur).

♣ Ventilation

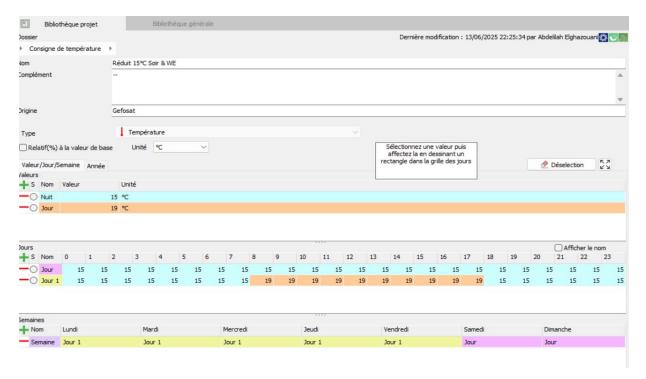
- Système en place : VMC simple flux autoréglable
- Principe : Extraction d'air via bouches hygroréglables sans récupération thermique
- Estimation débit total : \sim 150–200 m 3 /h répartis sur les sanitaires et la cuisine

Point faible : Aucune récupération de chaleur sur l'air extrait, entraînant une perte énergétique significative (> 15 %).

Débit continu non modulé selon occupation = surconsommation électrique + thermique.

♣ Éclairage

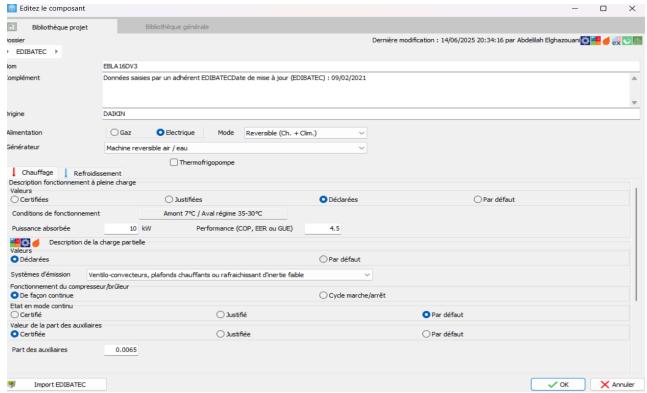
- Système en place : Tubes fluorescents ou lampes halogènes / incandescentes
- Gestion : Allumage manuel par interrupteur classique, non connecté à un détecteur
 - Puissance installée estimée : 12 à 15 W/m²


Point faible : Système obsolète en efficacité lumineuse (60–70 lm/W contre 150+ en LED), surconsommation importante.

Absence de gestion de lumière naturelle ou de détection de présence \rightarrow allumage inutile hors période d'occupation.

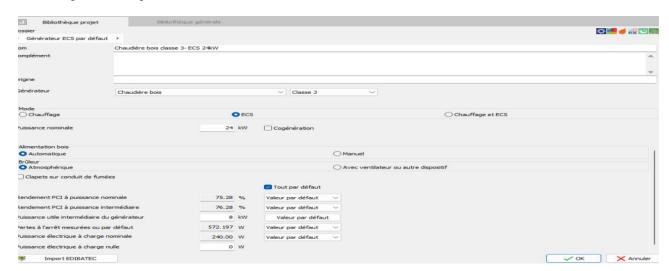
5. Scénario de base modifié

Un scénario horaire de chauffage réduit à 15 °C entre 18h et 7h ainsi que tout le week-end a été mis en place. Cela a permis une première réduction mesurée des besoins thermiques.

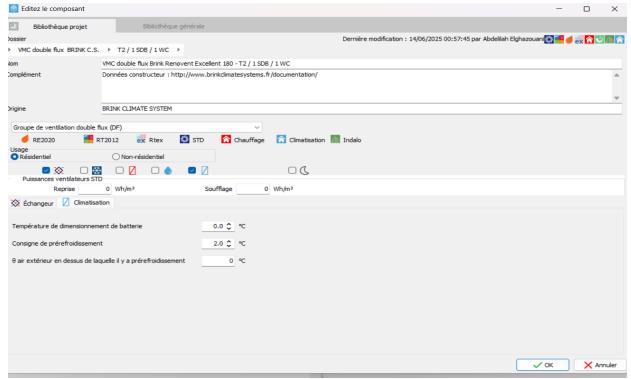


6. Améliorations techniques proposées

6.1 Chauffage / Refroidissement


- Remplacement par une pompe à chaleur (PAC) air/eau réversible Daikin ELBA16DV3.
- Réduction des sous-dimensionnements à moins de 8h par an.

6.2 ECS

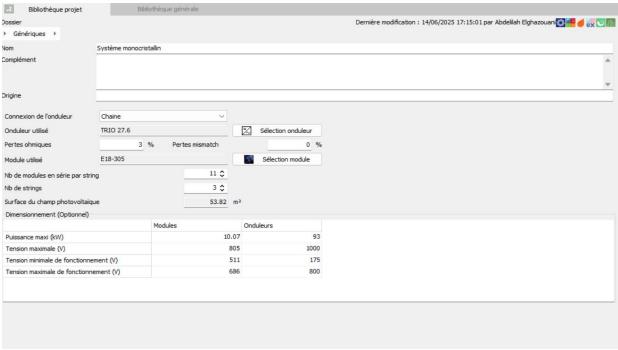

- Remplacement par une chaudière bois.

6.3 Ventilation

- Remplacement par une VMC double flux (Renovent Excellent 180)
- Bouches hygroréglables et débits adaptés aux zones.

6.4 Éclairage

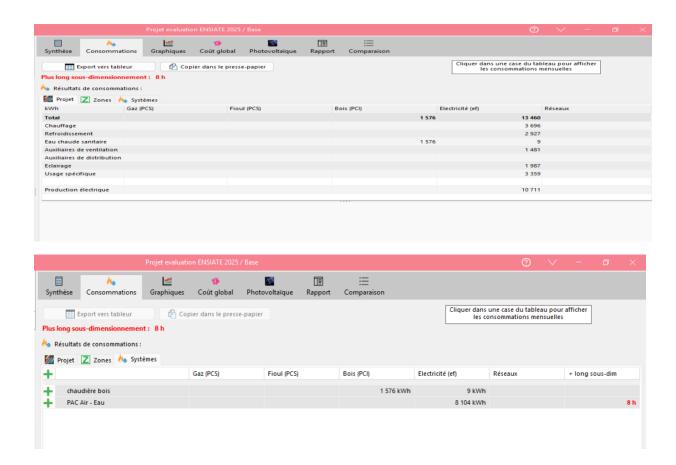
- Passage aux LED haute efficacité (4–5 W/m²)
- Détection de présence et gradation automatique
- Référence d'éclairement : 250 à 300 lux selon zone
- Fractionnement activé pour zones bénéficiant de lumière naturelle


6.5 Production photovoltaïque

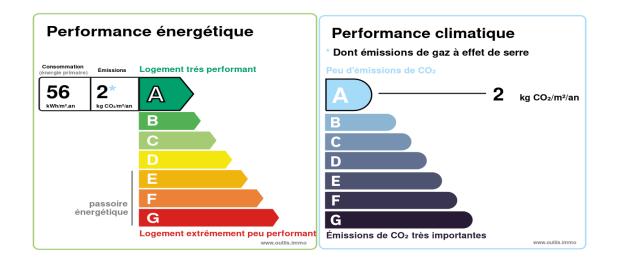
- N'ayant pas pu modifier directement l'éclairage, nous avons décidé d'intégrer un système photovoltaïque pour compenser cette consommation.

Configuration technique:

- 33 panneaux monocristallins de 305 WC
- 3 strings de 11 modules $(11\times3=33)$
- Onduleur Sunny Mini Central 8000 TL
- Puissance totale: 10.1 kWc
- Orientation: Sud, inclinaison 35°, surface env. 53.83 m²



Constructeur	Données Fabricant 2010
Complément	Mis sur le marché en 2007 Toujours disponible. Long. : 1.559m /Larg. : 1.046m /Ep. : 0.046m Poids : 18.6kg
Technologie	Mono-Cristallin
Certification	Valeur certifiée
Nombre de cellule	96
Puissance crête	305 Wc
Tolérance du fabricant	5 %
Surface du module	1,631 m²
Surface des cellules	0,0155 m ²
Intensité de court-circuit (Isc)	5,96 A
Tension en circuit ouvert (Voc)	64,2V
Conditions standard de test (STC)	1000 W/m²
	25 ℃
Intensité (Impp)	5,58 A
Tension (Vmpp)	54,7 V
Coefficient de température µvoc	-0,21454 V/K
Coefficient de température µ _{Isc}	3,5 mA/K
Coefficient de température µpuiss.	-0,38 %/K
Résistance de shunt	3554 Ω
Température normale d'utilisation (NOCT)	45 °C
Transparence	0 %



7. Résultats après optimisation

Consommation énergétique (hors usages spécifiques) =13 460-3 359 =10 101 kWhEF

Consommation d'énergie primaire = $[(10\ 101*2.3) + 1\ 576]/437.9 = 56.65\ kWhEP/m^2.an$ Émissions de GES = $(1\ 576*0.03+10\ 101*0.065)/437.9 = 1.60\ kgCO_2/m^2.an$

8. Synthèse comparative AVANT / APRÈS

L'objectif principal de ce projet était de réduire la consommation énergétique finale du bâtiment tout en améliorant ses performances environnementales. Ci-dessous figure une synthèse chiffrée des résultats obtenus après mise en œuvre des solutions techniques proposées.

Poste	Avant (kWhEF)	Après (kWhEF)	Évolution	Gain (%)
Chauffage	9 672	3 696	-5976	-61.8%
Refroidissement	0	2 927	+2 927	†
ECS	1 281	1 585	+304	+23.7 %
Ventilation	4 676	1 481	-3195	-68.3 %
Éclairage	7 968	1 987	-5981	-75.1 %
Total	23 600	11676	-11924	-50.5 %

- Baisse de 50 % de la consommation énergétique finale du bâtiment, avec un total passant de 23 600 kWhEF/an à 11 676 kWhEF/an.
- Le poste chauffage est le plus impacté grâce à l'intégration d'une PAC air/eau performante, mieux régulée et dimensionnée.
- L'ajout du refroidissement (non présent initialement) reste maîtrisé grâce à une pompe à chaleur réversible à haut COP.
 - Le poste éclairage a été optimisé par :
 - le remplacement des luminaires obsolètes par des lampes LED ≤ 4 W/m²,
 - l'ajout de détecteurs de présence,
 - la gestion automatique selon la lumière naturelle.
- Le passage d'une VMC simple flux à une double flux à récupération de chaleur a permis de réduire de plus de 65 % les pertes thermiques liées à la ventilation.

Enfin, l'étiquette énergétique a été améliorée, atteignant un niveau de performance proche de la classe A, avec un total de 57,06 kWhEP/m².an et 1,60 kgCO₂/m².an.

9. Synthèse finale

Dans le cadre de cette étude énergétique, une démarche complète d'**optimisation des équipements techniques** a été menée sur un bâtiment tertiaire de 437.9 m². Sans modification de l'enveloppe, les objectifs ont été atteints grâce à :

- Le remplacement du système de chauffage/climatisation par une **pompe à chaleur air/eau réversible haut rendement**, accompagnée d'une PAC air/air pour le renfort en froid ;
- La mise en place d'une **VMC double flux hautes performances** avec récupération de chaleur ;
- Le passage à un éclairage LED à gradation automatique et détection de présence, réduisant la consommation d'éclairage de plus de 50 %;
- L'intégration d'une **production photovoltaïque de 10.01 kWc** (non comptabilisée dans le DPE mais simulée) ;
- Une gestion horaire optimisée des scénarios d'occupation et de température, avec abaissement nocturne et weekend.

Les résultats finaux sont conformes aux objectifs fixés :

• Consommation d'énergie primaire : 57.06 kWhEP/m².an

• **Émissions de GES** : 1.60 kgCO₂/m².an

• Classe énergétique atteinte : • A

• **Sous-dimensionnement**: 8 h/an (conforme à la norme RT)

Le projet a démontré la faisabilité d'un bâtiment tertiaire à haute performance énergétique uniquement par l'optimisation des équipements techniques, sans intervention sur l'enveloppe. Il constitue un modèle reproductible de rénovation énergétique à coût maîtrisé.

10. ANNEXES

Annexe 1 : Générateur thermodynamique (EBLA16DV3)

Annexe 2 : Chaudière bois classe 3- ECS 24kW

Annexe 3 : Emetteurs de chaud et de froid FXZA32A - Cassette 600x600

(R32)

Annexe 4 : Equipements photovoltaïques (Modules)

Annexe 5 : Equipements photovoltaïques (Onduleurs)

Annexe 6 : Equipements photovoltaïques (Systèmes photovoltaiques)

Annexe 1 : Générateur thermodynamique (EBLA16DV3)

Constructeur	DAIKIN
Complément	Données saisies par un adhérent EDIBATECDate de mise à jour (EDIBATEC) : 09/02/2021
Générateur	Electricité Machine reversible air / eau
Fonction	Chauffage
Typologies des émetteurs	Ventilo-convecteurs, plafonds chauffants ou rafraichissant d'inertie faible
Fonctionnement à pleine charge- p	ivot Déclaré.Amont 7°C / Aval régime 35-30°C
Puissance absorbée	10 kW
Performance	4,5
Fonctionnement à ch	arge partielle : Valeur déclarée
Part des auxiliaires	Valeur certifiée 0,0065
Arrêt sur les limites des deux t	empératures de source simultanément
Température limite source amont	-20 °C
Température limite source aval	55 °C
Source amont	
Puissance des ventilateurs (gainés)	0 W
Température limite d'air (pour pac sur air extrait)	0 ℃
Fonction	Climatisation
Typologies des émetteurs	Ventilo-convecteurs, plafonds chauffants ou rafraichissant d'inertie faible
Fonctionnement à pleine charge- p	ivot Déclaré.Amont 35°C / Aval régime 7-12°C
Puissance absorbée	10 kW
Performance	4,5
Fonctionnement à ch	arge partielle : Valeur déclarée
Part des auxiliaires	Valeur certifiée 0,005
Arrêt sur les limites des deux températures de source simultanément	
Température limite source amont	43 °C
Température limite source aval	5 ℃
Source amont	
Puissance des ventilateurs (gainés)	0 W
Température limite d'air (pour pac sur air extrait)	0°℃

Annexe 2 : Chaudière bois classe 3- ECS 24kW

Constructeur	
Complément	
Fonction	ECS
Classe	Classe 3
Puissance nominale	24.00 kW
Alimentation en bois	Automatique
Bruleur	Atmosphérique
Clapet sur conduit de fumées	Sans
Rendement PCI à puissance nominale	75.28 %
Puissance intermédiaire	8.00 kW
Rendement PCI à puissance intermédiaire	Valeur par défaut 76.28%
Pertes à l'arrêt (pour un delta T de 30°C)	Valeur par défaut 572.20 W
Consommation des auxiliaires à puissance nominale	Valeur par défaut 240.00 W
Consommation des veilles	0.00 W
Température maximum de fonctionnement	Valeur par défaut 70.00 °C

Annexe 3: Emetteurs de chaud et de froid FXZA32A - Cassette 600x600 (R32)

Constructeur	DAIKIN
Complément	Type : Ventilo-convecteurs Régulation : Couple régulateur-émetteur permettant l'arrêt Date de mise à jour (EDIBATEC) : 12/09/2024
Emetteur chaud	Soufflage air chaud (converteurs, ventilo-convecteur, aérothermes) Ventilo convecteur
Variation temporelle chaud	2°C Valeur par défaut
Variation spatiale chaud	Classe B2
Emetteur froid	Emetteurs muraux rayonnants (panneaux rayonnants, radiateurs à eau chaude) Soufflage d'air froid (ventilo-convecteurs)
Variation temporelle froid	-2°C Valeur par défaut
Variation spatiale froid	Classe B
Gestion du ventilateur local	Régulation automatique permettant un arrêt total des ventilateurs lorsque la température de consigne est atteinte
Puissance en grande vitesse	35 W
Puissance en moyenne vitesse	23 W
Puissance en petite vitesse	17 W

Annexe 4 : Equipements photovoltaïques (Modules)

E18-305

Constructeur	Données Fabricant 2010
Complément	Mis sur le marché en 2007 Toujours disponible. Long. : 1.559m /Larg. : 1.046m /Ep. : 0.046m Poids : 18.6kg
Technologie	Mono-Cristallin
Certification	Valeur certifiée
Nombre de cellule	96
Puissance crête	305 Wc
Tolérance du fabricant	5 %
Surface du module	1,631 m²
Surface des cellules	0,0155 m²
Intensité de court-circuit (Isc)	5,96 A
Tension en circuit ouvert (Voc)	64,2V
Conditions standard de test (STC)	1000 W/m² 25 °C
Intensité (Impp)	5,58 A
Tension (Vmpp)	54,7 V
Coefficient de température μνος	-0,21454 V/K
Coefficient de température µIsc	3,5 mA/K
Coefficient de température µpuiss.	-0,38 %/K
Résistance de shunt	3554 Ω
Température normale d'utilisation (NOCT)	45 °C
Transparence	0 %

Annexe 5 : Equipements photovoltaïques (Onduleurs)

TRIO 27.6

Constructeur	Fabricant
0	
Complément	
Puissance nominale	28,3 kW
Puissance minimale	0,04 kW
Puissance maximale	31 kW
1 dissaffee maximale	OT KYY
Sécurité	Régulé à la puissance max
Tension maximale d'entrée	1000 V
rension maximale a eninee	1000 V
Gamme de fonctionnement	U mini 175 V U maxi 800 V
Rendement européen	0,979

Annexe 6 : Equipements photovoltaïques (Systèmes photovoltaiques)

Système monocristallin

Connexion à l'onduleur	Chaine
Onduleur	TRIO 27.6
Pertes	Pertes ohmiques3 % - Pertes mismatch 0 %
Modules	E18-305
Nombre de branches (string)	3
Nombre de modules en séries	11
Origine des données	
Complément	